FANDOM



The history of computing hardware starting at 1960 is marked by the conversion from vacuum tube to solid state devices such as the transistor and later the integrated circuit and microprocessor. By 1959, discrete transistors were considered sufficiently reliable and economical that they made further vacuum tube computers uncompetitive. The invention of the microprocessor laid marked a transition from mainframes to home microcomputers. Computer main memory slowly moved away from magnetic core memory devices to solid-state static and dynamic semiconductor memory, which greatly reduced the cost, size and power consumption of computers.

Third generation Edit

The mass increase in the use of computers accelerated with 'Third Generation' computers. These generally relied on the invention of the integrated circuit (or microchip), starting around 1965.

The first integrated circuit was produced in September 1958, but computers using them didn't begin to appear until 1963.

Large mainframe computers, such as the System/360, increased storage and processing abilities, while the integrated circuit also allowed development of much smaller computers. The minicomputer was a significant innovation in the 1960s and 1970s. It brought computing power to more people, not only through more convenient physical size but also through broadening the computer vendor field.

Fourth generation Edit

The basis of the fourth generation was the invention of the microprocessor, by engineers from Sharp, Busicom and Intel.

Third generation minicomputers were essentially scaled-down versions of mainframe computers, whereas the fourth generation's origins are fundamentally different.

Microprocessor-based computers, known as microcomputers, were originally very limited in their computational ability and speed, and were in no way an attempt to downsize the minicomputer. They were addressing an entirely different market. This led to the microcomputer revolution.

Processing power and storage capacities have grown beyond all recognition since the 1970s, but the underlying technology has remained basically the same of large-scale integration (LSI) or very-large-scale integration (VLSI) microchips, so it is widely regarded that most of today's computers still belong to the fourth generation.

Microprocessors Edit

Main article: Microprocessor
Intel C4004

Intel 4004

In 1971, Busicom and Intel debuted the world's first commercial microprocessor, the Intel 4004. It initially began as a CPU project at Busicom, a Japanese calculator company, as an alternative to hardwired circuitry. The "Busicom Project"[1] began with Masatoshi Shima's three-chip CPU design in 1968.[2][1] Sharp's Tadashi Sasaki conceived of a single-chip microprocessor CPU design, which he discussed with Busicom and Intel in 1968.[3] The Intel 4004 was then developed as a single-chip microprocessor from 1969 to 1970, designed by Busicom's Masatoshi Shima and Intel's Marcian Hoff and Federico Faggin.[1]

Computers were developed around microprocessors, with much of their processing abilities provided by one small microprocessor chip. The RAM chip offered kilobits of memory on one chip. The coupling of the RAM chip with the microprocessor allowed fourth generation computers to be smaller and faster than prior computers. The 4004 was only capable of 60,000 instructions per second, but its successors brought ever-growing speed and power to computers, including the 8008, 8080 (used in many computers with the CP/M operating system), and the 8086/8088 family. (The IBM personal computer (PC) and compatibles use processors that are still backwards-compatible with the 8086.) Other producers also made microprocessors which were widely used in microcomputers.

The following table shows a timeline of significant microprocessor developments.

Year Microprocessors
1971 Intel 4004; NEC μPD707/μPD708[4]
1972 Fairchild PPS-25; Intel 8008; Rockwell PPS-4; NEC μPD700[5][6]
1973 Burroughs Mini-D; National IMP-16; NEC μCOM; Toshiba TLCS-12[5]
1974 General Instrument CP1600; Intel 4040, 8080; Mostek 5065; Motorola 6800; National IMP-4, IMP-8, ISP-8A/500, PACE; Texas Instruments TMS 1000
1975 Fairchild F-8; Hewlett Packard BPC; Intersil 6100; MOS Technology 6502; Panafacom MN1610;[7][8] RCA CDP 1801; Rockwell PPS-8; Signetics 2650
1976 Intel 8080A; RCA CDP 1802; Signetics 8x300; Texas Instruments TMS9900; Zilog Z80
1977 Intel 8085
1978 Fujitsu MB8843; Intel 8086; Motorola 6801, 6809
1979 Intel 8088; Motorola 68000; Zilog Z8000, Z8001, Z8002
1980 Fujitsu MB8843, MB8844; National Semi 16032; Intel 8087
1981 DEC T-11; Harris 6120; IBM ROMP; Zilog Z80H, Z8002B
1982 Hewlett Packard FOCUS; Intel 80186, 80188, 80286; NEC V20; Berkeley RISC-I
1983 NEC V30; Stanford MIPS; UC Berkeley RISC-II
1984 Motorola 68020; National Semi 32032
1985 DEC MicroVax II; Harris Novix; Hitachi HD63705;[9] Intel 80386; MIPS R2000
1986 NEC V60; Sun SPARC; Zilog Z80000
1987 Acorn ARM2; DEC CVAX 78034; Hitachi Gmicro/200; NEC V70; Motorola 68030; NEC V70
1988 Intel 80386SX, i960; MIPS R3000
1989 DEC VAX DC520 Rigel; Intel 80486, i860; NEC V80
1990 IBM POWER1; Motorola 68040
1991 DEC NVAX; IBM RSC; MIPS R4000
1992 DEC Alpha 21064; Hewlett Packard PA-7100; Hitachi SuperH; Sun microSPARC I
1993 IBM POWER2, PowerPC 601; Intel Pentium; NEC VR4200
1994 DEC Alpha 21064A; Hewlett Packard PA-7100LC, PA-7200; IBM PowerPC 603, PowerPC 604; Motorola 68060; QED R4600
1995 DEC Alpha 21164; HAL Computer SPARC64; Intel Pentium Pro; MIPS R4300i; Sun UltraSPARC
1996 AMD K5; DEC Alpha 21164A; HAL Computer SPARC64 II; Hewlett Packard PA-8000; IBM P2SC; MTI R10000; QED R5000
1997 AMD K6; IBM PowerPC 620, PowerPC 750,; RS64, ES/390 G4; Intel Pentium II; Sun UltraSPARC IIs
1998 DEC Alpha 21264; HAL Computer SPARC64 III; Hewlett Packard PA-8500; IBM POWER3, RS64-II; ES/390 G5; QED RM7000; SGI MIPS R12000
1999 AMD Athlon; IBM RS64-III; Intel Pentium III; Motorola PowerPC 7400
2000 AMD Athlon XP; Duron; Fujitsu SPARC64 IV; IBM RS64-IV; z900; Intel Pentium 4
2001 IBM POWER4; Intel Itanium; Motorola PowerPC 7450; SGI MIPS R14000; Sun UltraSPARC III
2002 Fujitsu SPARC64 V; Intel Itanium 2
2003 AMD Opteron; IBM PowerPC 970; Intel Pentium M
2004 IBM POWER5; PowerPC BGL
2005 AMD Athlon 64 X2; Opteron Athens; IBM PowerPC 970MP; Xenon; Intel Pentium D; Sun UltraSPARC IV; UltraSPARC T1
2006 Toshiba/Sony/IBM Cell B.E.; Intel Core 2; Core Duo; Itanium Montecito
2007 AMD Opteron Barcelona; Fujitsu SPARC64 VI; IBM POWER, PowerPC BGP; Sun UltraSPARC T2; Tilera TILE64
2008 AMD Opteron Shanghai, Phenom; Fujitsu SPARC64 VII; IBM PowerXCell 8i; IBM z10; Intel Atom, Core i7; Tilera TILEPro64
2009 AMD Opteron Istanbul, Phenom II
2010 AMD Opteron Magny-cours; Fujitsu SPARC64 VII+; IBM POWER7; z196; Intel Itanium Tukwila, Westmere; Xeon, Nehalem-EX; Sun SPARC T3
2011 AMD FX Bulldozer, Interlagos, Llano; Fujitsu SPARC64 VIIIfx; Freescale PowerPC e6500; Intel Sandy Bridge, Xeon E7; Oracle SPARC T4
2012 Fujitsu SPARC64 IXfx; IBM POWER7+, zEC12; Intel Itanium Poulson, Intel Ivy Bridge
2013 Fujitsu SPARC64 X; Intel Haswell; Oracle SPARC T5
2014 IBM POWER8; Intel Broadwell
2015 Intel Skylake; AMD Excavator;
2016 Intel Kaby Lake; Apple A10 Fusion; Samsung Exynos 8 Octa 8890
2017 IBM POWER9; AMD Summit Ridge/Raven Ridge (Ryzen), Zen

Supercomputers Edit

The powerful supercomputers of the era were at the other end of the computing spectrum from the microcomputers, and they also used integrated circuit technology. In 1976, the Cray-1 was developed by Seymour Cray, who had left Control Data in 1972 to form his own company. This machine was the first supercomputer to make vector processing practical. It had a characteristic horseshoe shape to speed processing by shortening circuit paths. Vector processing uses one instruction to perform the same operation on many arguments; it has been a fundamental supercomputer processing method ever since. The Cray-1 could calculate 150 million floating point operations per second (150 megaflops). 85 were shipped at a price of $5 million each. The Cray-1 had a CPU that was mostly constructed of SSI and MSI ECL ICs.

Mainframes and minicomputers Edit

Computers were generally large, costly systems owned by large institutions before the introduction of the microprocessor in the early 1970s — corporations, universities, government agencies, and the like. Users were experienced specialists who did not usually interact with the machine itself, but instead prepared tasks for the computer on off-line equipment, such as card punches. A number of assignments for the computer would be gathered up and processed in batch mode. After the jobs had completed, users could collect the output printouts and punched cards. In some organizations, it could take hours or days between submitting a job to the computing center and receiving the output.

A more interactive form of computer use developed commercially by the middle 1960s. In a time-sharing system, multiple teleprinter terminals let many people share the use of one mainframe computer processor. This was common in business applications and in science and engineering.

A different model of computer use was foreshadowed by the way in which early, pre-commercial, experimental computers were used, where one user had exclusive use of a processor.[10] Some of the first computers that might be called "personal" were early minicomputers such as the LINC and PDP-8, and later on VAX and larger minicomputers from Digital Equipment Corporation (DEC), Data General, Prime Computer, and others. They originated as peripheral processors for mainframe computers, taking on some routine tasks and freeing the processor for computation. By today's standards, they were physically large (about the size of a refrigerator) and costly (typically tens of thousands of US dollars), and thus were rarely purchased by individuals. However, they were much smaller, less expensive, and generally simpler to operate than the mainframe computers of the time, and thus affordable by individual laboratories and research projects. Minicomputers largely freed these organizations from the batch processing and bureaucracy of a commercial or university computing center.

In addition, minicomputers were more interactive than mainframes, and soon had their own operating systems. The minicomputer Xerox Alto (1973) was a landmark step in the development of personal computers, because of its graphical user interface, bit-mapped high resolution screen, large internal and external memory storage, mouse, and special software.[11]

Microprocessor and cost reduction Edit

Main article: Microprocessor

In the minicomputer ancestors of the modern personal computer, processing was carried out by circuits with large numbers of components arranged on multiple large printed circuit boards. Minicomputers were consequently physically large and expensive to produce compared with later microprocessor systems. After the "computer-on-a-chip" was commercialized, the cost to produce a computer system dropped dramatically. The arithmetic, logic, and control functions that previously occupied several costly circuit boards were now available in one integrated circuit which was very expensive to design but cheap to produce in large quantities. Concurrently, advances in developing solid state memory eliminated the bulky, costly, and power-hungry magnetic core memory used in prior generations of computers.

Microcomputer emerges Edit

Development of the single-chip microprocessor was an enormous catalyst to the popularization of cheap, easy to use, personal computers. The advent of the microprocessor and solid-state memory made home computing affordable. Early hobby microcomputer systems, such as the Sord SMP80/x series in 1974,[12] and the Altair 8800 and Apple I introduced around 1975, marked the release of low-cost 8-bit processor chips, which had sufficient computing power to be of interest to hobby and experimental users. By 1977, pre-assembled systems such as the Apple II, Sord M200,[13] Commodore PET and TRS-80 began the era of mass-market home computers; much less effort was required to obtain an operating computer, and applications such as games, word processing, and spreadsheets began to proliferate. The Apple II, TRS-80 and PET were later dubbed the "1977 Trinity" by Byte magazine.[14]

Distinct from computers used in homes, small business systems were typically based on CP/M, until IBM introduced the IBM-PC, which was quickly adopted. The PC was heavily cloned, leading to mass production and consequent cost reduction throughout the 1980s. This expanded the PCs presence in homes, replacing the home computer category during the 1990s and leading to the current monoculture of architecturally identical personal computers.

Sord SMP80Edit

Sord Computer Corporation (now Toshiba Personal Computer System Corporation) developed the SMP80/08, the first microcomputer, in April 1972, using the Intel 8008 microprocessor. After the first general-purpose microprocessor, the Intel 8080, was announced in April 1974, Sord announced the SMP80/x series, the first microcomputers to use the 8080, in May 1974. The SMP80/x series marked a major leap toward the popularization of microcomputers.[12]

Altair 8800 and IMSAI 8080Edit

Main articles: Altair 8800 and IMSAI 8080

The Altair 8800, introduced in a Popular Electronics magazine article in the January 1975 issue, at the time set a new low price point for a computer, bringing computer ownership to an admittedly select market in the 1970s. This was followed by the IMSAI 8080 computer, with similar abilities and limitations. The Altair and IMSAI were essentially scaled-down minicomputers and were incomplete: to connect a keyboard or teleprinter to them required heavy, expensive "peripherals". These machines both featured a front panel with switches and lights, which communicated with the operator in binary. To program the machine after switching it on the bootstrap loader program had to be entered, without error, in binary, then a paper tape containing a BASIC interpreter loaded from a paper-tape reader. Keying the loader required setting a bank of eight switches up or down and pressing the "load" button, once for each byte of the program, which was typically hundreds of bytes long. The computer could run BASIC programs once the interpreter had been loaded.

The MITS Altair, the first commercially successful microprocessor kit, was featured on the cover of Popular Electronics magazine in January 1975. It was the world's first mass-produced personal computer kit, as well as the first computer to use an Intel 8080 processor. It was a commercial success with 10,000 Altairs being shipped. The Altair also inspired the software development efforts of Paul Allen and his high school friend Bill Gates who developed a BASIC interpreter for the Altair, and then formed Microsoft.

The MITS Altair 8800 effectively created a new industry of microcomputers and computer kits, with many others following, such as a wave of small business computers in the late 1970s based on the Intel 8080, Zilog Z80 and Intel 8085 microprocessor chips. Most ran the CP/M-80 operating system developed by Gary Kildall at Digital Research. CP/M-80 was the first popular microcomputer operating system to be used by many different hardware vendors, and many software packages were written for it, such as WordStar and dBase II.

Many hobbyists during the mid-1970s designed their own systems, with various degrees of success, and sometimes banded together to ease the job. Out of these house meetings the Homebrew Computer Club developed, where hobbyists met to talk about what they had done, exchange schematics and software, and demonstrate their systems. Many people built or assembled their own computers as per published designs. For example, many thousands of people built the Galaksija home computer later in the early 1980s.

It was arguably the Altair computer that spawned the development of Apple, as well as Microsoft which produced and sold the Altair BASIC programming language interpreter, Microsoft's first product. The second generation of microcomputers, those that appeared in the late 1970s, sparked by the unexpected demand for the kit computers at the electronic hobbyist clubs, were usually known as home computers. For business use these systems were less capable and in some ways less versatile than the large business computers of the day. They were designed for fun and educational purposes, not so much for practical use. And although you could use some simple office/productivity applications on them, they were generally used by computer enthusiasts for learning to program and for running computer games, for which the personal computers of the period were less suitable and much too expensive. For the more technical hobbyists home computers were also used for electronics interfacing, such as controlling model railroads, and other general hobbyist pursuits.

Computer systems and important hardware timeline Edit

Year Hardware
1959 Transistors: IBM 7090; IBM 1401
1960 DEC PDP 1
1961 Fairchild resistor transistor logic
1962 NPN transistor
1963 Mouse; CMOS patented
1964 CDC 6600; IBM Data Cell Drive
1965 DEC PDP 8; IBM 1130; DRAM introduced by Toshiba Toscal BC-1411[15]
1966 Integrated circuits: HP 2116A; Apollo Guidance Computer
1967 Fairchild built first MOS; Englebart applies for mouse patent; Casio AL-1000[16]
1968 Data General Nova; Intel 4004 development begins as Busicom CPU project
1969 Honeywell 316; Sharp QT-8D LSI calculator[17][18]
1970 DEC PDP 11; Sharp EL-8 handheld calculator[19][20]
1971 8" floppy disk; ILLIAC IV; Intel 4004 microprocessor; Busicom 141-PF; Busicom LE-120A HANDY[21]
1972 Atari founded; Cray Research founded; Intel 8008; Sord SMP80/08 microcomputer[22]
1973 Micral microcomputer
1974 Altair 8800; Data General Eclipse; Intel 8080; Sord SMP80/x microcomputers[22]
1975 Olivetti P6060; Panafacom MN1610 16-bit single-chip microprocessor[8][23]
1976 Tandem Computers; Zilog Z80
1977 Apple II; 5.25" floppy; Sord M200;[13] Panafacom Lkit-16;[24] Commodore PET; TRS-80
1978 DEC VAX 11
1979 Atari 400, 800
1980 Sinclair ZX80, Seagate hard disk drive
1981 IBM PC, Acorn BBC Micro
1982 Commodore 64
1983 Apple Lisa; 3.5" floppy
1984 Apple Mac; Apple Lisa 2
1985 PC's Limited which was renamed to Dell Computer Corporation in 1988; Amiga 1000
1986 Tandem Nonstop VLX
1987 Thinking Machine CM2; Tera Computer Founded
1988 Dell
1989 NeXT
1990 ETA10; CD-R
1991 Apple Switches to PowerPC
1992 HP 95LX; Palmtop PC
1993 Intel PPGA
1994 VESA Local Bus
1995 IBM Deep Blue chess computer
1996 USB 1.0
1997 Compaq buys Tandem; CD-RW
1998 iMac
2000 USB 2
2001 Apple iPod
2005 Mac Mini
2006 Apple transition to Intel
2007 iPhone 1
2008 USB 3.0
2010 Apple iPad
2012 IBM zEnterprise System

See also Edit

Notes Edit

  1. 1.0 1.1 1.2 Federico Faggin, The Making of the First Microprocessor, IEEE Solid-State Circuits Magazine, Winter 2009, IEEE Xplore
  2. Nigel Tout. The Busicom 141-PF calculator and the Intel 4004 microprocessor. Retrieved on November 15, 2009.
  3. Aspray, William (1994-05-25). Oral-History: Tadashi Sasaki. Interview #211 for the Center for the History of Electrical Engineering. The Institute of Electrical and Electronics Engineers, Inc.. Retrieved on 2013-01-02.
  4. NEC 751 (uCOM-4). The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved on 2010-06-11.
  5. 5.0 5.1 1970年代 マイコンの開発と発展 ~集積回路, Semiconductor History Museum of Japan
  6. Jeffrey A. Hart & Sangbae Kim (2001), The Defense of Intellectual Property Rights in the Global Information Order, International Studies Association, Chicago
  7. 16-bit Microprocessors. CPU Museum. Retrieved on 5 October 2010.
  8. 8.0 8.1 History. PFU. Retrieved on 5 October 2010.
  9. ZTAT (ZeroTurnAroundTime) Microcomputers. Archived from the original on October 6, 2014.
  10. Athony Ralston and edwin D. Reilly (ed), Encyclopedia of Computer Science 3rd Edition, Van Nostrand Reinhold, 1993 ISBN 0-442-27679-6, article Digital Computers History
  11. Rheingold, H. (2000). Tools for thought: the history and future of mind-expanding technology (New ed.). Cambridge, MA etc.: The MIT Press.
  12. 12.0 12.1 【Sord】 SMP80/x series, Information Processing Society of Japan
  13. 13.0 13.1 【Sord】 M200 Smart Home Computer Series, Information Processing Society of Japan
  14. Most Important Companies. Byte (September 1995). Archived from the original on 2008-06-18. Retrieved on 2008-06-10.
  15. Toshiba "Toscal" BC-1411 Desktop Calculator
  16. http://www.vintagecalculators.com/html/casio_al-1000.html
  17. Rick Bensene. Sharp QT-8D Electronic Calculator. The Old Calculator Web Museum. Retrieved on September 29, 2010.
  18. Sharp History — 1969–1970: From Senri to Tenri. SHARP World. Sharp Corporation. Retrieved on September 30, 2010.
  19. Joerg Woerner. Sharp EL-8. Datamath Calculator Museum. Retrieved on October 8, 2010.
  20. John Wolff. Sharp EL-8 and EL-8M Portable Calculators. John Wolff's Web Museum. Retrieved on July 30, 2014.
  21. "The one-chip calculator is here, and it's only the beginning", Electronic Design, February 18, 1971, p. 34
  22. 22.0 22.1 【Sord】 SMP80/x series, Information Processing Society of Japan
  23. 16-bit Microprocessors. CPU Museum. Retrieved on 5 October 2010.
  24. PANAFACOM Lkit-16, Information Processing Society of Japan

References Edit

External links Edit

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.